Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Control Hosp Epidemiol ; : 1-6, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38404133

RESUMO

OBJECTIVE: To evaluate the economic costs of reducing the University of Virginia Hospital's present "3-negative" policy, which continues methicillin-resistant Staphylococcus aureus (MRSA) contact precautions until patients receive 3 consecutive negative test results, to either 2 or 1 negative. DESIGN: Cost-effective analysis. SETTINGS: The University of Virginia Hospital. PATIENTS: The study included data from 41,216 patients from 2015 to 2019. METHODS: We developed a model for MRSA transmission in the University of Virginia Hospital, accounting for both environmental contamination and interactions between patients and providers, which were derived from electronic health record (EHR) data. The model was fit to MRSA incidence over the study period under the current 3-negative clearance policy. A counterfactual simulation was used to estimate outcomes and costs for 2- and 1-negative policies compared with the current 3-negative policy. RESULTS: Our findings suggest that 2-negative and 1-negative policies would have led to 6 (95% CI, -30 to 44; P < .001) and 17 (95% CI, -23 to 59; -10.1% to 25.8%; P < .001) more MRSA cases, respectively, at the hospital over the study period. Overall, the 1-negative policy has statistically significantly lower costs ($628,452; 95% CI, $513,592-$752,148) annually (P < .001) in US dollars, inflation-adjusted for 2023) than the 2-negative policy ($687,946; 95% CI, $562,522-$812,662) and 3-negative ($702,823; 95% CI, $577,277-$846,605). CONCLUSIONS: A single negative MRSA nares PCR test may provide sufficient evidence to discontinue MRSA contact precautions, and it may be the most cost-effective option.

2.
Nat Commun ; 12(1): 726, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563980

RESUMO

Human mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike. In this work, we focus on a machine-learned anonymized mobility map (hereon referred to as AMM) aggregated over hundreds of millions of smartphones and evaluate its utility in forecasting epidemics. We factor AMM into a metapopulation model to retrospectively forecast influenza in the USA and Australia. We show that the AMM model performs on-par with those based on commuter surveys, which are sparsely available and expensive. We also compare it with gravity and radiation based models of mobility, and find that the radiation model's performance is quite similar to AMM and commuter flows. Additionally, we demonstrate our model's ability to predict disease spread even across state boundaries. Our work contributes towards developing timely infectious disease forecasting at a global scale using human mobility datasets expanding their applications in the area of infectious disease epidemiology.


Assuntos
Previsões/métodos , Influenza Humana/epidemiologia , Aprendizado de Máquina , Austrália/epidemiologia , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Modelos Teóricos , Cidade de Nova Iorque/epidemiologia , Dinâmica Populacional , Reprodutibilidade dos Testes , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...